
Harvest,Yield, and ScalableTolerant Systems

ArmandoFox
StanfordUniversity

fox@cs.stanford.edu

Eric A. Brewer
Universityof Californiaat Berkeley
brewer@cs.berkeley.edu

Abstract

The cost of reconcilingconsistencyand statemanage-
mentwith high availability is highly magnifiedby the un-
precedentedscaleand robustnessrequirementsof today’s
Internet applications. We proposetwo strategies for im-
proving overall availability usingsimplemechanismsthat
scaleover large applicationswhoseoutputbehaviortoler-
atesgracefuldegradation.Wecharacterizethisdegradation
in termsof harvestandyield, andmapit directlyontoengi-
neeringmechanismsthatenhanceavailability by improving
fault isolation, and in somecasesalso simplify program-
ming. By collectingexamplesof relatedtechniquesin the
literature and illustrating the surprisingrange of applica-
tions that can benefitfrom theseapproaches,we hopeto
motivatea broaderresearch programin this area.

1. Moti vation, Hypothesis,Relevance

Increasingly, infrastructureservicescomprisenot only
routing,but alsoapplication-level resourcessuchassearch
engines[15], adaptationproxies[8], andWeb caches[20].
Theseapplicationsmustconfront the same

�������
opera-

tionalexpectationsandexponentially-growinguserloadsas
the routing infrastructure,andconsequentlyareabsorbing
comparableamountsof hardwareandsoftware.Thecurrent
trendof harnessingcommodity-PCclustersfor scalability
andavailability [9] is reflectedin thelargestwebserver in-
stallations.Thesesitesusetensto hundredsof PC’s to de-
liver 100M or more read-mostlypageviews per day, pri-
marily usingsimplereplicationor relatively smalldatasets
to increasethroughput.

The scale of theseapplicationsis bringing the well-
known tradeoff betweenconsistency and availability [4]
into very sharprelief. In this paperwe proposetwo gen-
eral directionsfor future work in building large-scalero-
bust systems. Our approachestoleratepartial failuresby
emphasizingsimplecompositionmechanismsthatpromote
faultcontainment,andby translatingpossiblepartialfailure
modesinto engineeringmechanismsthatprovidesmoothly-

degradingfunctionalityratherthanlackof availability of the
serviceasa whole. Theapproachesweredevelopedin the
context of clustercomputing,whereit is well accepted[22]
that oneof the major challengesis the nontrivial software
engineeringrequiredto automatepartial-failurehandlingin
orderto keepsystemmanagementtractable.

2. RelatedWork and the CAP Principle

In this discussion,strong consistencymeanssingle-
copy ACID [13] consistency; by assumptiona strongly-
consistentsystemprovidesthe ability to performupdates,
otherwisediscussingconsistency is irrelevant. High avail-
ability is assumedto beprovidedthroughredundancy, e.g.
data replication; data is consideredhighly available if a
givenconsumerof thedatacanalwaysreachsomereplica.
Partition-resiliencemeansthatthesystemaswholecansur-
vivea partitionbetweendatareplicas.
Strong CAP Principle. Strong Consistency, High
Availability, Partition-resilience:Pickat most2.

The CAP formulation makes explicit the trade-offs in
designingdistributedinfrastructureapplications.It is easy
to identify examplesof eachpairing of CAP, outlining the
proofby exhaustiveexampleof theStrongCAPPrinciple:

� CA without P: Databasesthat provide distributed
transactionalsemanticscanonly do so in the absence
of anetwork partitionseparatingserverpeers.

� CPwithoutA: In theeventof apartition,furthertrans-
actionsto anACID databasemaybeblockeduntil the
partitionheals,to avoid the risk of introducingmerge
conflicts(andthusinconsistency).

� AP without C: HTTP Web cachingprovides client-
server partition resilienceby replicating documents,
but aclient-serverpartitionpreventsverificationof the
freshnessof an expired replica. In general,any dis-
tributed databaseproblemcan be solved with either
expiration-basedcachingto getAP, or replicasandma-
jority voting to getPC(theminority is unavailable).

Anant Jain

Anant Jain

Anant Jain



In practice, many applicationsare best describedin
terms of reduced consistency or availability. For ex-
ample, weakly-consistentdistributed databasessuch as
Bayou[5] providespecificmodelswith well-definedconsis-
tency/availability tradeoffs; disconnectedfilesystemssuch
asCoda[16] explicitly arguedfor availability over strong
consistency; andexpiration-basedconsistency mechanisms
suchasleases[12] provide fault-tolerantconsistency man-
agement. Theseexamplessuggestthat there is a Weak
CAP Principle whichwehaveyetto characterizeprecisely:
Thestrongerthe guaranteesmadeaboutany two of strong
consistency, high availability, or resilienceto partitions,the
weaker theguaranteesthatcanbemadeaboutthethird.

3. Harvest,Yield, and the CAP Principle

Both strategies we proposefor improving availability
with simplemechanismsrely on theability to broadenour
notionof “correct behavior” for the targetapplication,and
thenexploit the tradeoffs in the CAP principle to improve
availability at largescale.

Weassumethatclientsmakequeriesto servers,in which
casethere are at least two metrics for correct behavior:
yield, which is theprobabilityof completinga request,and
harvest, which measuresthe fraction of the datareflected
in the response,i.e. the completenessof the answerto the
query. Yield is the commonmetric and is typically mea-
suredin “nines”: “four-ninesavailability” meansacomple-
tion probability of �
	 ������ . In practice,goodHA systems
aim for four or five nines. In the presenceof faults there
is typically a tradeoff betweenproviding no answer(reduc-
ing yield) andproviding an imperfectanswer(maintaining
yield,but reducingharvest).Someapplicationsdonottoler-
ateharvestdegradationbecauseany deviation from thesin-
glewell-definedcorrectbehavior renderstheresultuseless.
Forexample,asensorapplicationthatmustprovideabinary
sensorreading(presence/absence)doesnot toleratedegra-
dation of the output.1 On the other hand,someapplica-
tionstolerategracefuldegradationof harvest:onlineaggre-
gation[14] allowsauserto explicitly traderunningtimefor
precisionandconfidencein performingarithmeticaggrega-
tion queriesover a large dataset,therebysmoothlytrading
harvestfor responsetime, which is particularlyuseful for
approximateanswersandfor avoiding work that looksun-
likely to beworthwhilebasedon preliminaryresults.

At first glance,it would appearthat this kind of degra-
dationappliesonly to queriesandnot to updates.However,
the model can be appliedin the caseof “single-location”
updates:thosechangesthat are localizedto a singlenode
(or technicallya singlepartition). In this case,updatesthat

1Thisis consistentwith theuseof thetermyield in semiconductorman-
ufacturing:typically, eachdie on a wafer is intolerantto harvestdegrada-
tion, andyield is definedasthefractionof workingdiceon awafer.

affect reachablenodesoccurcorrectlybut have limited vis-
ibility (a form of reducedharvest),while thosethatrequire
unreachablenodesfail (reducingyield). Theselocalized
changesareconsistentexactly becausethe new valuesare
not availableeverywhere. This modelof updatesfails for
global changes,but it is still quite useful for many prac-
tical applications,including personalizationdatabasesand
collaborativefiltering.

4. Strategy 1: Trading Harvest for Yield—
Probabilistic Availability

Nearly all systemsare probabilisticwhetherthey real-
ize it or not. In particular, any systemthat is 100%avail-
ableundersinglefaultsis probabilisticallyavailableoverall
(sincethereis a non-zeroprobability of multiple failures),
andInternet-basedserversaredependenton thebest-effort
Internet for true availability. Thereforeavailability maps
naturally to probabilisticapproaches,and it is worth ad-
dressingprobabilisticsystemsdirectly, so that we canun-
derstandandlimit theimpactof faults. This requiressome
basicdecisionsaboutwhatneedsto beavailableandtheex-
pectednatureof faults.

For example,nodefaults in the Inktomi searchengine
removeaproportionalfractionof thesearchdatabase.Thus
in a 100-nodeclustera single-nodefault reducesthe har-
vestby 1% duringthedurationof thefault (theoverall har-
vestis usuallymeasuredovera longerinterval). Implicit in
this approachis gracefuldegradationundermultiple node
faults, specifically, linear degradationin harvest. By ran-
domlyplacingdataonnodes,wecanensurethatthe1%lost
is a random1%, which makestheaverage-caseandworst-
casefault behavior the same.In addition,by replicatinga
high-priority subsetof data,we reducethe probability of
losingthatdata.This givesusmoreprecisecontrolof har-
vest,bothincreasingit andreducingthepracticalimpactof
missingdata.Of course,it is possibleto replicateall data,
but doing so may have relatively little impact on harvest
andyield despitesignificantcost,andin any casecannever
ensure100%harvestor yield becauseof thebest-effort In-
ternetprotocolstheservicerelieson.

As a similar example, transformationproxies for thin
clients[8] alsotradeharvestfor yield, by degradingresults
on demandto matchthe capabilitiesof clients that might
otherwisebe unableto get resultsat all. Even when the
100%-harvestansweris usefulto the client, it may still be
preferableto traderesponsetime for harvestwhenclient-
to-server bandwidthis limited, for example,by intelligent
degradationto low-bandwidthformats[7].
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5. Strategy 2: Application Decompositionand
Orthogonal Mechanisms

Somelargeapplicationscanbedecomposedinto subsys-
temsthat are independentlyintolerantto harvestdegrada-
tion (i.e.they fail by reducingyield),but whoseindependent
failure allows the overall applicationto continuefunction-
ing with reducedutility. Theapplicationasa whole is then
tolerantof harvestdegradation.A gooddecompositionhas
at leastoneactualbenefitandonepotentialbenefit.

Theactualbenefitis theability to provisioneachsubsys-
tem’sstatemanagementseparately, providingstrongconsis-
tency or persistentstateonly for thesubsystemsthatneedit,
not for theentireapplication.Thesavingscanbesignificant
if only afew smallsubsystemsrequiretheextracomplexity.
For example,atypicale-commercesitehasaread-onlysub-
system(user-profile-drivencontentgenerationfrom a static
corpus),a transactionalsubsystem(billing), a subsystem
that managesstatethat mustbe persistentover the course
of a sessionbut not thereafter(shoppingcart), anda sub-
systemthatmanagestruly persistentbut read-mostly/write-
rarelystate(userpersonalizationprofile). Any of thesesub-
systems,except possiblybilling, can fail without render-
ing thewholeserviceuseless.If theuserprofile storefails,
usersmaystill browsemerchandisebut without thebenefit
of personalizedpresentation;if the shoppingcart mecha-
nismfails,one-at-a-timepurchasesarestill possible;andso
on.

Traditionally, the boundarybetweensubsystemswith
differing statemanagementrequirementsanddataseman-
tics hasbeencharacterizedvia narrow interfacelayers;we
proposethatin somecasesit is possibleto doevenbetter, if
we canidentify orthogonal mechanisms. Unlike a layered
mechanism,whichsitsaboveor below thenext layer, anor-
thogonalmechanismis independentof othermechanisms,
andhasessentiallyno runtimeinterfaceto theothermech-
anisms(except possiblya configurationinterface). Since
Brooks[1] revealsthatthecomplexity of asoftwareproject
grows asthe squareof the numberof engineersandLeve-
son[17] citesevidencethat most failuresin complex sys-
tems result from unexpectedinter-componentinteraction
rather than intra-componentbugs, we concludethat less
machineryis (quadratically)better. The ability to exploit
orthogonalmechanismsthereforeconstitutesa second(po-
tential)advantageof decomposition.

5.1. Programming With Orthogonal Mechanisms

Somewhat to our surprise,we have found thatorthogo-
nal mechanismsarenot aslimiting in practiceastheir de-
scriptionsuggests.For example,thecluster-basedScalable
Network Server (SNS)[9] is a deployedexampleof theor-
thogonalmechanismsapproach. SNS is a software layer

thatprovideshigh availability andincrementalscalingon a
clusterof PC’s,but providesnopersistentstatemanagement
facilitiesor dataconsistency guarantees.In fact,aprogram-
ming requirementfor SNS-hostedapplications,which are
structuredascomposablesubsystemsasdescribedabove,is
thateachapplicationmoduleberestartableatessentiallyar-
bitrary times. Although this constraintis nontrivial, it al-
lows SNS to usesimple orthogonalmechanismssuchas
timeouts,retries,and sandboxingto automaticallyhandle
avarietyof transientfaultsandloadimbalancesin theclus-
ter andkeepapplicationmodulesavailable while doing a
reasonablejob of automaticloadbalancing.

Despite the restartability constraintand lack of state
maintenancein SNS, we usedit to deploy a group-state
application: MediaPad [19], an adaptationproxy for the
desktopmediaboard applicationthatallows a PalmPilot to
participatein a multi-usersharedwhiteboardsession.Me-
diaBoardandMediaPaduseSRM (ScalableReliableMul-
ticast) [6] as the underlyingcommunicationprotocol. In
SRMapplications,therearenohardcopiesof groupor ses-
sionstate,but a soft copy is maintainedby eachpeerin the
session,anda multicast-basedrepairmechanismprovides
thebasisfor collaborative statemaintenance.Crashrecov-
ery is basedonrefreshingthesoft statevia therepairmech-
anism.Thisbehavior is compatiblewith theSNSconstraint
of restartableworkers, and statemaintenanceis orthogo-
nal to SNS,sinceno interfacesor behaviors wereaddedor
modifiedin SNStosupportSRMapplications.Similartech-
niqueshave beenusedto prototypea real-timestreaming
mediaserverusingsoft-stateprotocolmodules[23] running
on SNS.

5.2. RelatedUsesof Orthogonal Mechanisms

Compositionof orthogonalsubsystemsshiftstheburden
of checkingfor possiblyharmful interactionsfrom runtime
to compiletime,anddeploymentof orthogonalguardmech-
anismsimprovesrobustnessfor theruntimeinteractionsthat
do occur, by providing improved fault containment. The
practicalimplicationof theseeffectsis thatapplicationwrit-
ersneednot concernthemselvesdirectlywith theprovision
of incrementalscaling(replicationand load management)
andhigh availability: the simplemechanismsin SNSper-
form thesefunctionsfor all applications.

Neither useof orthogonalityis new. Variousforms of
sandboxing,includingstack-overrunguarding[3], system-
call monitoring[11], andsoftwarefault isolation[24], con-
stitutegoodexamplesof orthogonalsafety. Orthogonalpri-
vacy anddataintegrity is exemplifiedby theSecureSocket
Layer(SSL)protocol[10]: aninitial out-of-bandhandshake
establishesa securechannel,which can then be usedas
the substrateof any streamconnection. Orthogonalap-
proachesareparticularlyuseful in addingoperationalfea-
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turessuchassecurityor robustnessto legacy applications
thatweredesignedwithout thesefeaturesin mind, without
requiringspecialchangesto thecoreapplicationcode.The
safety-criticalsystemscommunityhasalsobeenusingor-
thogonalmechanismsfor sometime: themechanicalinter-
locks removed from the Therac-25radiationtherapy ma-
chine unmasked a software racecondition that ultimately
ledto patientfatalities[18]. Thisandsimilarexamplescon-
stituteabundant(if anecdotal)supportfor thedesignprinci-
ple of simplefailsafemechanismswith small statespaces;
our contribution is the identificationof this collection of
techniquesandthe potentialsynergy of pairing themwith
compile-timeorthogonalcompositionasstrategiesfor im-
proving robustness.

6. Discussionand Research Agenda

We presentedtwo implementedexamplesof mapping
harvestdegradationontospecificmechanismsthatprovide
engineeringtractability, availability throughredundancy, or
someotherdesiredoperational feature. In the caseof the
Inktomi searchengine,per-nodetimeout constraintskeep
the overall systemyield constantat the expenseof prob-
abilistic harvest degradation. In general, it maps faults
to degradationin harvestratherthanyield, thusproviding
probabilisticallygoodanswersessentiallyall the time (al-
thoughtheyield cannotbe 100%). In the caseof the SNS
cluster-basedapplicationserver, theconstraintthatapplica-
tion modulesmustbe restartableallows the useof simple
scaling and reliability mechanisms,including orthogonal
mechanismssuchastimeoutsandretries,andthe restarta-
bility constraintis addressedby composingthe applica-
tions with orthogonalstatemaintenancemechanismssuch
asSRM.Specificmechanismswe havebeenableto exploit
to simplify engineeringandimproverobustnessor scalabil-
ity include:

� Simplemechanismswith smallstatespaceswhosebe-
haviors areeasyto reasonabout: timeout-basedpar-
tial failure handling, guard timers, orthogonalsecu-
rity, etc.,inspiredby orthogonalmechanismsin safety-
critical systems.

� The orthogonalizationof thesemechanismswith re-
spectto applicationlogic, separatingthe application
functionality from the provision of high availability.
Thecompositionof SNSandSRM provide a goodil-
lustrationof this approach.

� The replacementof hard statewith refreshablesoft
state, which often has the beneficial side effect of
making the recovery code the sameas the mainline
code.The loadbalancingmanagerin SNSworks this

way [2], using refreshablesoft statemechanismsin-
spiredby IP multicastroutingandSRMstaterepair.

� Overall tractability of large-scaleengineeringinvolv-
ing hardwarereplicationandredundancy. Only a few
veryexpensivespecializedsystems,suchasTeradata’s
768-nodedatamining cluster[21], really comparein
size and aggregatecapacityto cluster-basedInternet
services.

It remainsto formally characterizeapplicationsthat tol-
erategracefulharvest degradation,including as a special
casethoseapplicationscomposedof degradation-intolerant
andpossiblyorthogonalsubsystems.We expectthata for-
mal characterizationwill induceaprogrammingmodelthat
providesfirst-classabstractionsfor manipulatingdegraded
results.A formally-characterizableframework for deploy-
ing suchapplicationswould thenamountto a constructive
proofof theWeakCAP Principle.

Traditionally, an applicationandsystemdesignedwith
incrementalscalabilityandhigh availability in mind have
differed from their counterpartsdesignedwithout respect
to theseconstraints.We have foundthatdespitetheir sim-
plicity, the engineeringtechniqueswe usedin the design
and constructionof the above exampleapplicationshave
afforded surprisingflexibility in the rangeof applications
thatcanbebuilt. Simpletechniqueswerechosenin orderto
simplify theformidableprogrammingtask,andtechniques
with goodfault isolationwerefavoredin orderto preserve
thefaultisolationadvantagesalreadyinherentin clusters.In
particular, theSNSserver showedthat it is possibleto sep-
aratescalabilityandavailability concernsfrom the design
of mainlineapplicationsif the applicationstructurecanbe
reconciledwith the designconstraintsimposedby the use
of simpleandorthogonalmechanisms.

We would like to motivate a broaderresearcheffort
thatextendstheseobservations,resultingin a setof design
guidelinesfor theconstructionof large-scalerobustapplica-
tionsspanningtherangefrom ACID to BASE[9]. Weoffer
theinitial observationshereasa first stepin thatdirection.

We thankthe anonymousreviewersfor their comments
on thefirst draft andour colleaguesat StanfordandBerke-
ley for beingsoundingboardsfor theseearlyideas.
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