
Large-Scale Automated Refactoring Using
ClangMR

Hyrum K. Wright, Daniel Jasper, Manuel Klimek, Chandler Carruth, Zhanyong Wan
Google, Inc.

Mountain View, California 94043
Email: {hwright,djasper,klimek,chandlerc,wan}@google.com

Abstract—Maintaining large codebases can be a challenging
endeavour. As new libraries, APIs and standards are introduced,
old code is migrated to use them. To provide as clean and
succinct an interface as possible for developers, old APIs are
ideally removed as new ones are introduced. In practice, this
becomes difficult as automatically finding and transforming code
in a semantically correct way can be challenging, particularly as
the size of a codebase increases.

In this paper, we present a real-world implementation of a
system to refactor large C++ codebases efficiently. A combination
of the Clang compiler framework and the MapReduce parallel
processor, ClangMR enables code maintainers to easily and
correctly transform large collections of code. We describe the
motivation behind such a tool, its implementation and then
present our experiences using it in a recent API update with
Google’s C++ codebase.

I. INTRODUCTION

As software systems evolve, existing code often must be
updated to allow for future feature development, removal of
old or incompatible interfaces, and further maintenance tasks.
Large software systems often suffer from an inability to evolve
to meet new demands [1], largely due to increasing amounts
of technical debt [2], and the inability of code maintainers
to automatically update large portions code in a semantically
safe way. Even automatic changes which may appear safe in
isolation may introduce semantic conflicts that cause faults
which are difficult to detect [3].

Google addresses this challenge by using ClangMR, a tool
that uses semantic knowledge from the C++ abstract syntax
tree (AST) to make editing decisions. ClangMR programs
are written in C++ and provide a wide variety of different
refactoring capabilities. ClangMR also takes advantage of the
independent nature of most refactoring work by parallelizing
its analysis across many computers simultaneously by using
the MapReduce framework [4]. This combination of knowl-
edge, flexibility and speed allows code maintainers to perform
complex transformations across millions of lines of C++ code
in a matter of minutes.

While this specific implementation of ClangMR is depen-
dent upon Google’s infrastructure, a significant portion of the
system is available as open source software as part of the
LLVM project [5]. The Clang AST and its node traversal and
matching infrastructure are all readily available for public con-
sumption and improvements continue to be publicly released.

In the following pages, we present the basic implementation
details of the ClangMR system in use at Google. We also

discuss a sample large-scale refactoring effort recently com-
pleted which modified over 35,000 function call sites across
100 million lines of code.

A. Existing Tools

ClangMR is not the first tool designed to do complex
refactorings over C++, but it is unique in its flexibility, speed,
and use in industrial applications.

While useful in simple cases, traditional regular-expression-
based matching tools lack the semantic knowledge that com-
plex transformations often require. For instance, these tools
can not distinguish calls to similarly-named methods which
are members of different classes, making them unsuitable
for large-scale semantically-safe refactoring. Such naming
conflicts also frequently increase as the size of a codebase
grows, leading to a lack of scalability.

Many integrated development environments, such as
Eclipse, provide a limited set of refactoring tools. While these
tools take advantage of compile-time knowledge, they are
generally limited to a single file or package, and only support
the operations built into the tool. Since these tools run on a
developer’s local workstation, processing large collections of
source code is often intractable.

Other tools, such as Pivot [6], may be versatile, but have
difficulty scaling to many millions of lines of code. Some tools
that do scale, such as those described by Kumar, et al in [7],
perform specific types of transformations at scale, but lack the
versatility of ClangMR. While these are useful in theory, we
have yet to see existing tools demonstrated on a large, real-
world corpus of production-quality code.

II. MOTIVATION

Google maintains a large mixed-language codebase in a
single repository, with a significant portion written in C++.
Like many large software systems, this codebase continues
to evolve as new APIs, idioms and standards are introduced.
While new code may use the improved techniques, large
amounts of legacy code still uses old APIs and standards.

To help maintain as small an API surface as reasonable, the
developers and teams responsible for introducing new core
APIs are also tasked with removing old ones and migrating
existing callers to the new abstractions. Google engineers are
also actively engaged in source code rejuvenation efforts to
migrate custom implementations to the C++11 standard [8].

Anant Jain

Anant Jain

Anant Jain

Anant Jain

Anant Jain

Anant Jain

Anant Jain

Anant Jain

Anant Jain

C++
Corpus

Compilation
Index

Refactoring MapReduce

WorkerWorkerWorker

Node-matching
Transformation

Tool

Compiler
Compiler

Compiler

Source Code Indexer

Source Code
Rewriter

Transformation
Instructions

Modified
Code

Fig. 1: ClangMR processing pipeline

ClangMR has seen wide use within Google for the past
two years, and it continues to evolve into a more powerful
and easy-to-use tool. Recent refactoring projects include:

• Updating legacy C++98 code to take advantage of fea-
tures in the C++11 standard.

• Removing redundant explicit type conversions.
• Updating callers to improved APIs, such as string manip-

ulation and file handling.
While these may seem trivial in isolation, performing these

migrations on millions of lines of code would not be practical
without ClangMR. In general, ClangMR helps reduce the
accumulated technical debt of a diverse codebase built over
the course of more than a decade. An example of a specific
migration effort is discussed in depth below.

III. IMPLEMENTATION

The ClangMR implementation consists of three parts:
• an indexer which describes how to compile the C++

codebase into a collection of ASTs
• a transformation-specific node matching tool which

builds ASTs from the index, matches applicable AST
nodes, and outputs editing instructions

• a source code refactorer which consumes editing instruc-
tions and modifies the files in a local version control client
to effect the desire transformations

Of the three separate components, only the transformation-
specific node matching tool is specific to an individual trans-
formation. The compilation index can be consumed by multi-
ple node matching tools, and the refactorer can operate on
their standardized output. This architecture means a single
code maintainer needs only implement an appropriate matcher
for the desired transform, rather than the entire pipeline.
An overview of the pipeline is shown in Figure 1, and the
individual components are discussed below.

A. Source Code Indexer

A daily task builds a denormalized index of the acts of
compilation—the commandlines used, the various files read,
and the filesystem layouts of those files. Storing the entire
precomputed ASTs would be space-prohibitive, but this index
serves to provide a way to quickly construct those ASTs
from a snapshot in source code history. Determining these
compilation steps is largely independent for individual files, so
this process can be parallelized across a number of different
machines in Google’s standard build cluster.

B. Node Matcher

The node matcher uses the most recent compilation index to
produce ASTs for the entire collection of source code. Because
this intermediate AST is only required for node traversal, it
can be stored in memory for the duration of the traversal. Even
though the size of the AST can be quite large, traversing the
AST demonstrates high memory locality, so it is quite fast.
Experience shows that it is roughly as fast to compile C++
code into a memory-held AST as it is to read a completely
annotated AST out of distant storage.

Because each translation unit has a separate root node in
the AST, and each source file is generally an independent
translation unit, the node matcher can operate on separate
translation units in parallel. At Google, we use the MapReduce
framework [4], but ClangMR could be adapted to use other
suitable parallelization systems.

Most of the node matching executes outside the care or
control of the programmer performing the refactoring. As
input, a developer provides an appropriate node matching
expression, and a callback to be invoked when that expression
is matched. In practice, these tend to be relatively small: a
few hundred lines of C++ code. The ClangMR infrastructure
handles running the node matching algorithm and invoking the
callbacks on the appropriate nodes.

The node matching infrastructure first reads the index from
bigtable, uses it to recursively traverse the AST nodes, and
then invokes any callbacks that have been registered for
matched nodes. Any output produced by the callbacks is then
serialized to disk for use by the refactorer.

1) Node Matching Expression: Developers use node match-
ing expressions to register a callback with the ClangMR pro-
cessor. These expressions may match a variety of node types,
and can be qualified with various logical filters and traversal
operations. Examples of node matching expressions used at
Google are shown in Figure 2, and a complete reference is
available on the Clang website [9].

2) Callbacks: When the preprocessor matches a node in
the AST, it invokes the provided callback with the node and
some context about where it was found, such as the source
location. The callback is written in C++, allowing it to query
the properties of the node and its context and make complex
decisions about what edits, if any, can be applied. They may
also decide to not make any edits. This technique allows
for much more powerful transformations than pure textual
substitution.

Anant Jain

Anant Jain

Anant Jain

Anant Jain

Anant Jain

Anant Jain

Anant Jain

Anant Jain

S t a t e m e n t M a t c h e r ma tche r =
c a l l E x p r (a l l O f (

a r g u m e n t C o u n t I s (1) ,
c a l l e e (f u n c t i o n D e c l (hasName (

” : : Foo : : Bar ”)))))
. b ind (” c a l l ”) ;

(a) Match all calls to Foo::Bar which have a single
argument
TypeLocMatcher ma tche r =

l o c (qua lType (h a s D e c l a r a t i o n (
r e c o r d D e c l (hasName (

” : : s c o p e d a r r a y ”)))))
. b ind (” l o c ”) ;

(b) Match all scoped_array typed variable declara-
tions

Fig. 2: Example node matching expressions

As output, each callback may generate a set of instructions
on how to transform the code on a textual level. Similar to a
text-based patch, these instructions describe edits to the target
source file as a series of byte-level offsets and additions or
deletions. These instructions are then serialized to disk, and
used as input to the source code refactorer.

An example callback implementation is shown in Figure 3.
Much of the error checking and boilerplate has been omitted,
but combined with the matcher in Figure 2a, this example
renames all calls to Foo::Bar to Foo::Baz, independent
of the name of the instance variable, or whether is is called
directly or by pointer or reference.

C. Refactorer

The source refactorer reads the list of edit commands
generated by the node matcher callbacks and filters out any
duplicate, overlapping or conflicting edit instructions before
editing the source code in the local version control client. Each
edit is processed serially in the version control client on the
local workstation of the developer, which is synchronized to
the version of code stored in the compilation index.

Even though it is local and serial, in practice, this step
is relatively quick, and edits spanning thousands of files are
performed on the order of tens of seconds. A final pass with
ClangFormat, a Clang-based formatting tool [10], ensures the
resulting code meets formatting and style guide recommenda-
tions.

D. Limitations

While ClangMR enables a large class of refactoring oper-
ations at scale, it does have limitations. ClangMR can only
refactor changes which are self-contained within translation
units. Large sets of changes still require tedious manual
review—though review tools are improving to allow faster
automated review of large changes. Finally, ClangMR requires
learning some nuances of the Clang AST, which requires
developer investment.

void R e f a c t o r (c o n s t MatchFinde r : : Ma tchResu l t& r e s) {
Clang : : CXXMemberCallExpr∗ c a l l =

r e s . Nodes . ge tStmtAs<c l a n g : : CXXMemberCallExpr>(
” c a l l ”) ;

c o n s t c l a n g : : MemberExpr ∗member expr =
l lvm : : dyn cas t<c l a n g : : MemberExpr>(

c a l l−>g e t C a l l e e ()) ;

E d i t S t a t e s t a t e (r e s , c a l l) ;
s t a t e . ReplaceToken (member expr−>getMemberLoc () ,

” Baz ”) ;

Re po r t (& s t a t e) ;
}

Fig. 3: Example node matcher callback

In spite of these limitations, ClangMR enables engineers
to make significant semantically-correct changes to large C++
codebases.

IV. PRACTICAL APPLICATION

In this section, we present an actual large-scale transfor-
mation done at Google using ClangMR and demonstrate the
technical advantages to this approach. While not the largest
or most complex refactoring performed done at Google, this
example demonstrates the versatility of the AST-based refac-
toring approach.

A. Splitting Strings

Google’s internal software libraries have historically
provided a number of methods for splitting strings.
One of the most common APIs is known as
SplitStringUsing, shown in Figure 4. As the name
implies, SplitStringUsing parses a string of characters
using a set of delimiters, and inserts the resulting substrings
into the provided vector of strings.

Google engineers recently introduced a single method to
unify and consolidate the various split-related APIs. Known
as strings::Split, it is shown in Figure 5. This new
API is appropriately parameterized to handle the use cases
of most existing split functions in a single interface. While
a complete discussion of strings::Split is out-of-scope
for this paper, suffice it to say that the new API was well
received by Google engineers, led to reduced numbers of bugs
and has been proposed for the next iteration of the ISO C++
standard [11].

After the new API debuted, most Google developers were
not anxious to invest the effort to migrate their currently-
functioning code to strings::Split. Due to the semantic
difference between the APIs, any automatic transformation
would require semantic knowledge, not just a strict textual
substitution. At the time, there were roughly 45,000 callers
of SplitStringUsing, and migrating them by hand was
infeasible. One software engineer was attempting to convert
these callers manually using a combination of inspection and
editor macros, but his efforts could not keep up with an

Anant Jain

Anant Jain

Anant Jain

Anant Jain

Anant Jain

Anant Jain

Anant Jain

void S p l i t S t r i n g U s i n g (c o n s t s t r i n g& f u l l ,
c o n s t char∗ d e l i m i t e r s ,
v e c t o r<s t r i n g >∗ r e s u l t) ;

void foo () {
s t r i n g i n p u t ;
v e c t o r<s t r i n g > o u t p u t ;
. . .
S p l i t S t r i n g U s i n g (i n p u t , ”−” , &o u t p u t) ;

}

Fig. 4: SplitStringUsing example

namespace s t r i n g s {
t empla te <typename D e l i m i t e r , P r e d i c a t e >
S p l i t (S t r i n g P i e c e t e x t , D e l i m i t e r d , P r e d i c a t e p) ;

s t r u c t SkipEmpty {
bool operator () (S t r i n g P i e c e sp) c o n s t {

re turn ! sp . empty () ;
}

} ;
}

void foo () {
s t r i n g i n p u t ;
. . .
v e c t o r<s t r i n g > o u t p u t =

s t r i n g s : : S p l i t (i n p u t , ”−” ,
s t r i n g s : : SkipEmpty ()) ;

}

Fig. 5: strings::Split example

evolving codebase. ClangMR allowed us to migrate the bulk
of existing callers and encourage engineers to use the new API
in new code.

1) Node Matching Implementation: Instead of using a node
matching expression to decide which kinds of calls were
transformable, the expression simply matched all calls to
SplitStringUsing, and relied upon logic in the callback
to determine if the transformation was safe or not. A “safe”
transformation meets the following criteria:

• The output variable declaration was in the same scope as
the call to SplitStringUsing.

• The output variable was not referenced between its dec-
laration and the call to SplitStringUsing.

Both of these criteria were easily examined using the
context available in the AST provided by ClangMR. In some
complex situations, we chose to defer the edits to be done
manually.

Because ClangMR allows the examinations of literal values
known at compile-time, we were also able to determine
how to rewrite the actual function calls themselves. The
default behavior of SplitStringUsing is to use any of
the provided characters as a delimiter, but doing so with
strings::Split this requires a separate Delimiter
argument, which could be omitted in the case of only one de-
limiter character. By examining the literal delimiter arguments
to the old function call, we could simplify a large number of

common cases when rewriting to the new code.
2) Experiences: The initial ClangMR program trans-

formed about 35,000 callers of SplitStringUsing to
strings::Split, and these changes were mailed for re-
view in 3,100 separate chunks, though not all simultaneously.
These were often reviewed quite quickly, with an 80th-
percentile review time of just over two minutes. The bulk of
reviews were completed over two months, with a small number
requiring another month to complete.

One benefit of using ClangMR for this work was that the
transformation could be repeated. During the course of this
effort, we frequently re-ran the tool to find any additional uses
which had been added since the initial run. This made it easy
stay current with an ever-changing codebase.

V. CONCLUSION

In this paper, we presented the design and implementa-
tion of ClangMR, a highly parallelized, semantically-aware
refactoring tool based upon the Clang compiler running on
MapReduce. We also discussed an example application of
a real-world large-scale transformation using the ClangMR
system to update callers of deprecated APIs.

ClangMR allows for fast and versatile refactoring of large
C++ codebases, and has been applied to many problems within
Google, enabling maintainers to keep millions of lines of C++
code nimble and accessible to thousands of engineers.

REFERENCES

[1] S. Eick, T. Graves, A. Karr, J. Marron, and A. Mockus, “Does code
decay? assessing the evidence from change management data,” Software
Engineering, IEEE Transactions on, vol. 27, no. 1, pp. 1–12, 2001.

[2] T. Klinger, P. Tarr, P. Wagstrom, and C. Williams, “An enterprise
perspective on technical debt,” in Proceedings of the 2nd Workshop on
Managing Technical Debt. ACM, 2011, pp. 35–38.

[3] G. Thione and D. Perry, “Parallel changes: detecting semantic inter-
ferences,” in Computer Software and Applications Conference, 2005.
COMPSAC 2005. 29th Annual International, vol. 1, 2005, pp. 47–56
Vol. 2.

[4] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” in Proceedings of the 6th conference on Symposium on
Opearting Systems Design & Implementation - Volume 6, ser. OSDI’04.
Berkeley, CA, USA: USENIX Association, 2004, pp. 10–10. [Online].
Available: http://dl.acm.org/citation.cfm?id=1251254.1251264

[5] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Code Generation and Optimiza-
tion, 2004. CGO 2004. International Symposium on. IEEE, 2004, pp.
75–86.

[6] B. Stroustrup and G. Dos Reis, “Supporting sell for high-performance
computing,” in Languages and Compilers for Parallel Computing.
Springer, 2006, pp. 458–465.

[7] A. Kumar, A. Sutton, and B. Stroustrup, “Rejuvenating c++ programs
through demacrofication,” in Software Maintenance (ICSM), 2012 28th
IEEE International Conference on. IEEE, 2012, pp. 98–107.

[8] P. Pirkelbauer, D. Dechev, and B. Stroustrup, “Source code rejuvenation
is not refactoring,” in Proceedings of the 36th Conference on Current
Trends in Theory and Practice of Computer Science, ser. SOFSEM ’10.
Berlin, Heidelberg: Springer-Verlag, 2010, pp. 639–650.

[9] (2013) AST matcher reference. [Online]. Available:
http://clang.llvm.org/docs/LibASTMatchersReference.html

[10] (2013) ClangFormat. [Online]. Available:
http://clang.llvm.org/docs/ClangFormat.html

[11] G. Miller. (2013) std::split(): An algorithm for
splitting strings. [Online]. Available: http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2013/n3510.html

Anant Jain

