
https://www.researchgate.net/publication/220476881_CAP_Twelve_years_later_How_the_Rules_have_Changed?enrichId=rgreq-737c883ea2663aa0b71fdefd08a5a0f0-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ3Njg4MTtBUzozMjE4MTEwMzQ2NDAzODRAMTQ1MzczNzEzNzU0Ng%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/220476881_CAP_Twelve_years_later_How_the_Rules_have_Changed?enrichId=rgreq-737c883ea2663aa0b71fdefd08a5a0f0-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ3Njg4MTtBUzozMjE4MTEwMzQ2NDAzODRAMTQ1MzczNzEzNzU0Ng%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Flexbox?enrichId=rgreq-737c883ea2663aa0b71fdefd08a5a0f0-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ3Njg4MTtBUzozMjE4MTEwMzQ2NDAzODRAMTQ1MzczNzEzNzU0Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/SafeDrive?enrichId=rgreq-737c883ea2663aa0b71fdefd08a5a0f0-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ3Njg4MTtBUzozMjE4MTEwMzQ2NDAzODRAMTQ1MzczNzEzNzU0Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-737c883ea2663aa0b71fdefd08a5a0f0-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ3Njg4MTtBUzozMjE4MTEwMzQ2NDAzODRAMTQ1MzczNzEzNzU0Ng%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eric_Brewer3?enrichId=rgreq-737c883ea2663aa0b71fdefd08a5a0f0-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ3Njg4MTtBUzozMjE4MTEwMzQ2NDAzODRAMTQ1MzczNzEzNzU0Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eric_Brewer3?enrichId=rgreq-737c883ea2663aa0b71fdefd08a5a0f0-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ3Njg4MTtBUzozMjE4MTEwMzQ2NDAzODRAMTQ1MzczNzEzNzU0Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_California_Berkeley?enrichId=rgreq-737c883ea2663aa0b71fdefd08a5a0f0-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ3Njg4MTtBUzozMjE4MTEwMzQ2NDAzODRAMTQ1MzczNzEzNzU0Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eric_Brewer3?enrichId=rgreq-737c883ea2663aa0b71fdefd08a5a0f0-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ3Njg4MTtBUzozMjE4MTEwMzQ2NDAzODRAMTQ1MzczNzEzNzU0Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eric_Brewer3?enrichId=rgreq-737c883ea2663aa0b71fdefd08a5a0f0-XXX&enrichSource=Y292ZXJQYWdlOzIyMDQ3Njg4MTtBUzozMjE4MTEwMzQ2NDAzODRAMTQ1MzczNzEzNzU0Ng%3D%3D&el=1_x_10&_esc=publicationCoverPdf

25FEBRUARY 2012

Thus, pragmatically, a partition is a time bound on com-
munication. Failing to achieve consistency within the time
bound implies a partition and thus a choice between C
and A for this operation. These concepts capture the core
design issue with regard to latency: are two sides moving
forward without communication?

This pragmatic view gives rise to several important con-
sequences. The first is that there is no global notion of a
partition, since some nodes might detect a partition, and
others might not. The second consequence is that nodes
can detect a partition and enter a partition mode—a central
part of optimizing C and A.

Finally, this view means that designers can set time
bounds intentionally according to target response times;
systems with tighter bounds will likely enter partition
mode more often and at times when the network is merely
slow and not actually partitioned.

Sometimes it makes sense to forfeit strong C to avoid the
high latency of maintaining consistency over a wide area.
Yahoo’s PNUTS system incurs inconsistency by maintain-

ing remote copies asynchronously.5 However, it makes the
master copy local, which decreases latency. This strategy
works well in practice because single user data is naturally
partitioned according to the user’s (normal) location. Ide-
ally, each user’s data master is nearby.

Facebook uses the opposite strategy:6 the master copy
is always in one location, so a remote user typically has
a closer but potentially stale copy. However, when users
update their pages, the update goes to the master copy
directly as do all the user’s reads for a short time, despite
higher latency. After 20 seconds, the user’s traffic reverts to
the closer copy, which by that time should reflect the update.

MANAGING PARTITIONS
The challenging case for designers is to mitigate a par-

tition’s effects on consistency and availability. The key
idea is to manage partitions very explicitly, including not
only detection, but also a specific recovery process and a
plan for all of the invariants that might be violated during
a partition. This management approach has three steps:

CAP CONFUSION

Aspects of the CAP theorem are often misunderstood, particularly
the scope of availability and consistency, which can lead to

undesirable results. If users cannot reach the service at all, there is no
choice between C and A except when part of the service runs on the
client. This exception, commonly known as disconnected operation or
offline mode,1 is becoming increasingly important. Some HTML5
features�in particular, on-client persistent storage�make discon-
nected operation easier going forward. These systems normally
choose A over C and thus must recover from long partitions.

Scope of consistency reflects the idea that, within some boundary,
state is consistent, but outside that boundary all bets are off. For
example, within a primary partition, it is possible to ensure complete
consistency and availability, while outside the partition, service is not
available. Paxos and atomic multicast systems typically match this
scenario.2 In Google, the primary partition usually resides within one
datacenter; however, Paxos is used on the wide area to ensure global
consensus, as in Chubby,3 and highly available durable storage, as in
Megastore.4

Independent, self-consistent subsets can make forward progress
while partitioned, although it is not possible to ensure global invari-
ants. For example, with sharding, in which designers prepartition data
across nodes, it is highly likely that each shard can make some prog-
ress during a partition. Conversely, if the relevant state is split across a
partition or global invariants are necessary, then at best only one side
can make progress and at worst no progress is possible.

Does choosing consistency and availability (CA) as the �2 of 3�
make sense? As some researchers correctly point out, exactly what it
means to forfeit P is unclear.5,6 Can a designer choose not to have parti-
tions? If the choice is CA, and then there is a partition, the choice must
revert to C or A. It is best to think about this probabilistically: choosing
CA should mean that the probability of a partition is far less than that
of other systemic failures, such as disasters or multiple simultaneous
faults.

Such a view makes sense because real systems lose both C and A
under some sets of faults, so all three properties are a matter of degree.

In practice, most groups assume that a datacenter (single site) has no
partitions within, and thus design for CA within a single site; such
designs, including traditional databases, are the pre-CAP default.
However, although partitions are less likely within a datacenter, they
are indeed possible, which makes a CA goal problematic. Finally, given
the high latency across the wide area, it is relatively common to forfeit
perfect consistency across the wide area for better performance.

Another aspect of CAP confusion is the hidden cost of forfeiting
consistency, which is the need to know the system�s invariants. The
subtle beauty of a consistent system is that the invariants tend to hold
even when the designer does not know what they are. Consequently,
a wide range of reasonable invariants will work just fine. Conversely,
when designers choose A, which requires restoring invariants after a
partition, they must be explicit about all the invariants, which is both
challenging and prone to error. At the core, this is the same concurrent
updates problem that makes multithreading harder than sequential
programming.

References
 1. J. Kistler and M. Satyanarayanan, �Disconnected Operation in the Coda File

System� ACM Trans. Computer Systems, Feb. 1992, pp. 3-25.
 2. K. Birman, Q. Huang, and D. Freedman, �Overcoming the �D� in CAP: Using

Isis2 to Build Locally Responsive Cloud Services,� Computer, Feb. 2011, pp.
50-58.

 3. M. Burrows, �The Chubby Lock Service for Loosely-Coupled Distributed
Systems,� Proc. Symp. Operating Systems Design and Implementation (OSDI
06), Usenix, 2006, pp. 335-350.

 4. J. Baker et al., �Megastore: Providing Scalable, Highly Available Storage for
Interactive Services,� Proc. 5th Biennial Conf. Innovative Data Systems
Research (CIDR 11), ACM, 2011, pp. 223-234.

 5. D. Abadi, �Problems with CAP, and Yahoo�s Little Known NoSQL System,�
DBMS Musings, blog, 23 Apr. 2010; http://dbmsmusings.blogspot.
com/2010/04/problems-with-cap-and-yahoos-little.html.

 6. C. Hale, �You Can�t Sacrifice Partition Tolerance,� 7 Oct. 2010; http://
codahale.com/you-cant-sacrifice-partition-tolerance.

r2bre.indd 25 1/25/12 11:33 AM

COVER FE ATURE

COMPUTER 28

during partitioning. The tracking and limitation of partition-
mode operations ensures the knowledge of which invari-
ants could have been violated, which in turn enables the
designer to create a restoration strategy for each such
invariant. Typically, the system discovers the violation
during recovery and must implement any fix at that time.

There are various ways to fix the invariants, includ-
ing trivial ways such as “last writer wins” (which ignores
some updates), smarter approaches that merge opera-
tions, and human escalation. An example of the latter
is airplane overbooking: boarding the plane is in some
sense partition recovery with the invariant that there
must be at least as many seats as passengers. If there are
too many passengers, some will lose their seats, and ide-

ally customer service will compensate those passengers
in some way.

The airplane example also exhibits an externalized
mistake: if the airline had not said that the passenger had
a seat, fixing the problem would be much easier. This is
another reason to delay risky operations: at the time of
recovery, the truth is known. The idea of compensation is
really at the core of fixing such mistakes; designers must
create compensating operations that both restore an in-
variant and more broadly correct an externalized mistake.

Technically, CRDTs allow only locally verifiable invariants
—a limitation that makes compensation unnecessary but
that somewhat decreases the approach’s power. However, a
solution that uses CRDTs for state convergence could allow
the temporary violation of a global invariant, converge
the state after the partition, and then execute any needed
compensations.

Recovering from externalized mistakes typically re-
quires some history about externalized outputs. Consider
the drunk “dialing” scenario, in which a person does not
remember making various telephone calls while intoxi-
cated the previous night. That person’s state in the light of
day might be sound, but the log still shows a list of calls,
some of which might have been mistakes. The calls are the
external effects of the person’s state (intoxication). Because
the person failed to remember the calls, it could be hard to
compensate for any trouble they have caused.

In a machine context, a computer could execute orders
twice during a partition. If the system can distinguish two
intentional orders from two duplicate orders, it can cancel
one of the duplicates. If externalized, one compensation
strategy would be to autogenerate an e-mail to the cus-
tomer explaining that the system accidentally executed
the order twice but that the mistake has been fixed and
to attach a coupon for a discount on the next order. With-
out the proper history, however, the burden of catching the
mistake is on the customer.

Some researchers have formally explored compensating
transactions as a way to deal with long-lived transac-
tions.15,16 Long-running transactions face a variation of
the partition decision: is it better to hold locks for a long
time to ensure consistency, or release them early and
expose uncommitted data to other transactions but allow
higher concurrency? A typical example is trying to update
all employee records as a single transaction. Serializing
this transaction in the normal way locks all records and
prevents concurrency. Compensating transactions take
a different approach by breaking the large transaction
into a saga, which consists of multiple subtransactions,
each of which commits along the way. Thus, to abort the
larger transaction, the system must undo each already
committed subtransaction by issuing a new transaction
that corrects for its effects—the compensating transaction.

In general, the goal is to avoid aborting other trans-

COMPENSATION ISSUES IN AN
AUTOMATED TELLER MACHINE

In the design of an automated teller machine (ATM), strong
consistency would appear to be the logical choice, but in practice,

A trumps C. The reason is straightforward enough: higher availa-
bility means higher revenue. Regardless, ATM design serves as a
good context for reviewing some of the challenges involved in
compensating for invariant violations during a partition.

The essential ATM operations are deposit, withdraw, and check
balance. The key invariant is that the balance should be zero or
higher. Because only withdraw can violate the invariant, it will need
special treatment, but the other two operations can always
execute.

The ATM system designer could choose to prohibit withdrawals
during a partition, since it is impossible to know the true balance at
that time, but that would compromise availability. Instead, using
stand-in mode (partition mode), modern ATMs limit the net with-
drawal to at most k, where k might be $200. Below this limit,
withdrawals work completely; when the balance reaches the limit,
the system denies withdrawals. Thus, the ATM chooses a sophisti-
cated limit on availability that permits withdrawals but bounds the
risk.

When the partition ends, there must be some way to both
restore consistency and compensate for mistakes made while the
system was partitioned. Restoring state is easy because the opera-
tions are commutative, but compensation can take several forms. A
final balance below zero violates the invariant. In the normal case,
the ATM dispensed the money, which caused the mistake to
become external. The bank compensates by charging a fee and
expecting repayment. Given that the risk is bounded, the problem
is not severe. However, suppose that the balance was below zero at
some point during the partition (unknown to the ATM), but that a
later deposit brought it back up. In this case, the bank might still
charge an overdraft fee retroactively, or it might ignore the viola-
tion, since the customer has already made the necessary payment.

In general, because of communication delays, the banking
system depends not on consistency for correctness, but rather on
auditing and compensation. Another example of this is �check
kiting,� in which a customer withdraws money from multiple
branches before they can communicate and then flees. The over-
draft will be caught later, perhaps leading to compensation in the
form of legal action.

r2bre.indd 28 1/25/12 11:33 AM

