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Thus, pragmatically, a partition is a time bound on com-
munication. Failing to achieve consistency within the time 
bound implies a partition and thus a choice between C 
and A for this operation. These concepts capture the core 
design issue with regard to latency: are two sides moving 
forward without communication? 

This pragmatic view gives rise to several important con-
sequences. The first is that there is no global notion of a 
partition, since some nodes might detect a partition, and 
others might not. The second consequence is that nodes 
can detect a partition and enter a partition mode—a central 
part of optimizing C and A.

Finally, this view means that designers can set time 
bounds intentionally according to target response times; 
systems with tighter bounds will likely enter partition 
mode more often and at times when the network is merely 
slow and not actually partitioned.

Sometimes it makes sense to forfeit strong C to avoid the 
high latency of maintaining consistency over a wide area. 
Yahoo’s PNUTS system incurs inconsistency by maintain-

ing remote copies asynchronously.5 However, it makes the 
master copy local, which decreases latency. This strategy 
works well in practice because single user data is naturally 
partitioned according to the user’s (normal) location. Ide-
ally, each user’s data master is nearby.

Facebook uses the opposite strategy:6 the master copy 
is always in one location, so a remote user typically has 
a closer but potentially stale copy. However, when users 
update their pages, the update goes to the master copy 
directly as do all the user’s reads for a short time, despite 
higher latency. After 20 seconds, the user’s traffic reverts to 
the closer copy, which by that time should reflect the update.

MANAGING PARTITIONS
The challenging case for designers is to mitigate a par-

tition’s effects on consistency and availability. The key 
idea is to manage partitions very explicitly, including not 
only detection, but also a specific recovery process and a 
plan for all of the invariants that might be violated during 
a partition. This management approach has three steps:

CAP CONFUSION

Aspects of the CAP theorem are often misunderstood, particularly 
the scope of availability and consistency, which can lead to 

undesirable results. If users cannot reach the service at all, there is no 
choice between C and A except when part of the service runs on the 
client. This exception, commonly known as disconnected operation or 
offline mode,1 is becoming increasingly important. Some HTML5 
features�in particular, on-client persistent storage�make discon-
nected operation easier going forward. These systems normally 
choose A over C and thus must recover from long partitions.

Scope of consistency reflects the idea that, within some boundary, 
state is consistent, but outside that boundary all bets are off. For 
example, within a primary partition, it is possible to ensure complete 
consistency and availability, while outside the partition, service is not 
available. Paxos and atomic multicast systems typically match this 
scenario.2 In Google, the primary partition usually resides within one 
datacenter; however, Paxos is used on the wide area to ensure global 
consensus, as in Chubby,3 and highly available durable storage, as in 
Megastore.4

Independent, self-consistent subsets can make forward progress 
while partitioned, although it is not possible to ensure global invari-
ants. For example, with sharding, in which designers prepartition data 
across nodes, it is highly likely that each shard can make some prog-
ress during a partition. Conversely, if the relevant state is split across a 
partition or global invariants are necessary, then at best only one side 
can make progress and at worst no progress is possible. 

Does choosing consistency and availability (CA) as the �2 of 3� 
make sense? As some researchers correctly point out, exactly what it 
means to forfeit P is unclear.5,6 Can a designer choose not to have parti-
tions? If the choice is CA, and then there is a partition, the choice must 
revert to C or A. It is best to think about this probabilistically: choosing 
CA should mean that the probability of a partition is far less than that 
of other systemic failures, such as disasters or multiple simultaneous 
faults. 

Such a view makes sense because real systems lose both C and A 
under some sets of faults, so all three properties are a matter of degree. 

In practice, most groups assume that a datacenter (single site) has no 
partitions within, and thus design for CA within a single site; such 
designs, including traditional databases, are the pre-CAP default. 
However, although partitions are less likely within a datacenter, they 
are indeed possible, which makes a CA goal problematic. Finally, given 
the high latency across the wide area, it is relatively common to forfeit  
perfect consistency across the wide area for better performance.

Another aspect of CAP confusion is the hidden cost of forfeiting 
consistency, which is the need to know the system�s invariants. The 
subtle beauty of a consistent system is that the invariants tend to hold 
even when the designer does not know what they are. Consequently, 
a wide range of reasonable invariants will work just fine.  Conversely, 
when designers choose A, which requires restoring invariants after a 
partition, they must be explicit about all the invariants, which is both 
challenging and prone to error. At the core, this is the same concurrent 
updates problem that makes multithreading harder than sequential 
programming.
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during partitioning. The tracking and limitation of partition- 
mode operations ensures the knowledge of which invari-
ants could have been violated, which in turn enables the 
designer to create a restoration strategy for each such 
invariant. Typically, the system discovers the violation 
during recovery and must implement any fix at that time.

There are various ways to fix the invariants, includ-
ing trivial ways such as “last writer wins” (which ignores 
some updates), smarter approaches that merge opera-
tions, and human escalation. An example of the latter 
is airplane overbooking: boarding the plane is in some 
sense partition recovery with the invariant that there 
must be at least as many seats as passengers. If there are 
too many passengers, some will lose their seats, and ide-

ally customer service will compensate those passengers 
in some way. 

The airplane example also exhibits an externalized 
mistake: if the airline had not said that the passenger had 
a seat, fixing the problem would be much easier. This is 
another reason to delay risky operations: at the time of 
recovery, the truth is known. The idea of compensation is 
really at the core of fixing such mistakes; designers must 
create compensating operations that both restore an in-
variant and more broadly correct an externalized mistake. 

Technically, CRDTs allow only locally verifiable invariants 
—a limitation that makes compensation unnecessary but 
that somewhat decreases the approach’s power. However, a 
solution that uses CRDTs for state convergence could allow 
the temporary violation of a global invariant, converge 
the state after the partition, and then execute any needed 
compensations.

Recovering from externalized mistakes typically re-
quires some history about externalized outputs. Consider 
the drunk “dialing” scenario, in which a person does not 
remember making various telephone calls while intoxi-
cated the previous night. That person’s state in the light of 
day might be sound, but the log still shows a list of calls, 
some of which might have been mistakes. The calls are the 
external effects of the person’s state (intoxication). Because 
the person failed to remember the calls, it could be hard to 
compensate for any trouble they have caused.

In a machine context, a computer could execute orders 
twice during a partition. If the system can distinguish two 
intentional orders from two duplicate orders, it can cancel 
one of the duplicates. If externalized, one compensation 
strategy would be to autogenerate an e-mail to the cus-
tomer explaining that the system accidentally executed 
the order twice but that the mistake has been fixed and  
to attach a coupon for a discount on the next order. With-
out the proper history, however, the burden of catching the 
mistake is on the customer.

Some researchers have formally explored compensating 
transactions as a way to deal with long-lived transac-
tions.15,16 Long-running transactions face a variation of 
the partition decision: is it better to hold locks for a long 
time to ensure consistency, or release them early and 
expose uncommitted data to other transactions but allow 
higher concurrency? A typical example is trying to update 
all employee records as a single transaction. Serializing 
this transaction in the normal way locks all records and 
prevents concurrency. Compensating transactions take 
a different approach by breaking the large transaction 
into a saga, which consists of multiple subtransactions, 
each of which commits along the way. Thus, to abort the 
larger transaction, the system must undo each already 
committed subtransaction by issuing a new transaction 
that corrects for its effects—the compensating transaction.

In general, the goal is to avoid aborting other trans-

COMPENSATION ISSUES IN AN  
AUTOMATED TELLER MACHINE 

In the design of an automated teller machine (ATM), strong 
consistency would appear to be the logical choice, but in practice, 

A trumps C. The reason is straightforward enough: higher availa-
bility means higher revenue. Regardless, ATM design serves as a 
good context for reviewing some of the challenges involved in 
compensating for invariant violations during a partition.

The essential ATM operations are deposit, withdraw, and check 
balance. The key invariant is that the balance should be zero or 
higher. Because only withdraw can violate the invariant, it will need 
special treatment, but the other two operations can always 
execute.

The ATM system designer could choose to prohibit withdrawals 
during a partition, since it is impossible to know the true balance at 
that time, but that would compromise availability. Instead, using 
stand-in mode (partition mode), modern ATMs limit the net with-
drawal to at most k, where k might be $200. Below this limit, 
withdrawals work completely; when the balance reaches the limit, 
the system denies withdrawals. Thus, the ATM chooses a sophisti-
cated limit on availability that permits withdrawals but bounds the 
risk.

When the partition ends, there must be some way to both 
restore consistency and compensate for mistakes made while the 
system was partitioned. Restoring state is easy because the opera-
tions are commutative, but compensation can take several forms. A 
final balance below zero violates the invariant. In the normal case, 
the ATM dispensed the money, which caused the mistake to 
become external. The bank compensates by charging a fee and 
expecting repayment. Given that the risk is bounded, the problem 
is not severe. However, suppose that the balance was below zero at 
some point during the partition (unknown to the ATM), but that a 
later deposit brought it back up. In this case, the bank might still 
charge an overdraft fee retroactively, or it might ignore the viola-
tion, since the customer has already made the necessary payment.

In general, because of communication delays, the banking 
system depends not on consistency for correctness, but rather on 
auditing and compensation. Another example of this is �check 
kiting,� in which a customer withdraws money from multiple 
branches before they can communicate and then flees. The over-
draft will be caught later, perhaps leading to compensation in the 
form of legal action.
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